

BRIGHTLANDS SPORTINNOVATOR CENTER

The transition from linear to circular

Ruud Bongers 21 mei 2025

www.sportinnovator.nl Sportinnovator is an initiative from the Dutch government to accelerate innovations in sports

Brightlands Chemelot Campus

Golden medal partners:

empowering tomorrow's talent

Brightlands Chemelot Campus is a global hub for the development and scaling of sustainable materials innovations.

- Open chemistry and materials campus with world-class development and scale-up facilities
- A thriving ecosystem with 130+ corporates, SMEs, startups, scale-ups, institutes, and educational partners
- Home to 4,000+ professionals and over 1,000 students contributing to innovation
- Collaborative community actively promoting partnerships in sustainable materials
- I Host to the Sportinnovator Center, advancing sports-related innovation

Connect this world with the world of sports and vice versa

Customers:

Sport Materials

- Sport equipment brands
- Sport associations

What is the customers Problem?

- Upcoming EU Regulation (e.g. Digital Product Passport and Corporate Sustainability Reporting)
- Linear products, services and business models
- Lack of research facilities
- Lack of (executing) network
- Lack of Comprehensive Product Development Methodology and Knowledge

What do our customers want?

Based on best practices (KNWU, Greenholds, Limburg Bike) and market demand (Shimano, Lazer, NABV, ISPO)

- Accelerate clear evidence based circular solutions for a Green identity
- Comply to (EU Green Deal) regulations
- Increase revenues
- Performance improvement
- Increase members

Do you experience similar challenges in your organization?

What do we have to offer:

- Circular product design, engineering and materials knowledge
- LCA's. Measurement of social, economic and environmental impact.
- Connect to materials **network** partners/ eco-systems.
 - Consortium building
- High end material **R&D facilities**
- Knowledge of circular business models
- Project management

Future Strategy?

What: Circular Product Design

By 2050, the EU aims for net-zero greenhouse gas (GHG) emissions, necessitating an economic shift, with the Circular Economy at the forefront of solutions.

To achieve **net-zero GHG** the EU adopted the **Green Deal.** Validation of the objectives outlined in the Green Deal is carried out through **an EU Policy Framework (ESRS, DPP)**. 80% of environmental impact originates from product Design Phase decisions, emphasizing the need for implementing Circular Strategies to reduce the impact.

How: Regulation!

How: Change the Process

(Berwald et al., 2021; EU, 2023; EC, 2020; Johansson, 2002; McAloone & Bey, 2009)

Behind the regulation!

To achieve **net-zero GHG** the EU adopted the **Green Deal.** Validation of the objectives outlined in the Green Deal is carried out through **an EU Policy Framework (ESRS, DPP)**. 80% of environmental impact originates from product Design Phase decisions, emphasizing the need for implementing Circular Strategies to reduce the impact.

What changes do we need to make to the current product development process to achieve this goal?

(Berwald et al., 2021; EU, 2023; EC, 2020; Johansson, 2002; McAloone & Bey, 2009)

Circular Product Design

Figure I Circular product design encompasses both design for product integrity (aimed at preventing and reversing obsolescence at a product and component level) and design for recycling (aimed at preventing and reversing obsolescence at a material level).

Figure 2 Typology of design approaches for product integrity.

(Den Hollander et al., 2017)

Have you implemented any circular strategies so far – and if so, how?

Example projects

- Olympic Handbike Mitch Valize
- 100% Limburg Bike
- Racket Orthese Sam Schröder
- Pole Vault scanner ESSX Rens Blom
- Greenholds
- Bio degradable Airsoft BB's
- Bio degradable Golf Tees
- Circulair Supply Chain Project
- Circulair Product Design in Sport (PhD)
- Sustainable landing mats
- Network Events
- Monomaterial helmet

Background: Greenholds Climbing holds

60 million climbing holds produced annually and rising:

Current Market standard: Thermosets Polyurethane & Polyester → waste 4 million holds annually Greenholds:

Thermoplastic Injection moulded from recycled Polyamide 6 Designed for Recycling

Circulair Chain Project

BRIGHTLANDS SPORTINNOVATOR CENTER

Circular Product Design

Design for Product Integrity

Design for Recycling

Greenholds follows a DfR

Figure I Circular product design encompasses both design for product integers, (aimed at preventing and eversing obsolescence at a **approach** product and component level) and design for recycling (aimed at preventing and reversing obsolescence at a material level).

Circular Product Design

Tests show that PA6 is three times more durable than PU and oneandhalf times more durable than UPR

Figure 2 Typology of design approaches for product integrity.

Goal & Research Question (option 1)

Goal: The goal of this study is to evaluate and compare the environmental impact and circularity performance of two types of climbing holds:

- Image: Second Science of Scienc
- A Y: redesigned holds produced using recycled polyamide 6 (PA6) sourced from automotive waste and post-consumer climbing ropes, incorporating design for recycling principles.

RQ: What is the difference in environmental impact and circularity performance between traditional climbing holds (**X**) made from thermosetting plastics and redesigned holds made from recycled content such as automotive waste and post-consumer climbing ropes (**Y**)?

Methodology

Aspect	Life Cycle Assessment (LCA)	ISO 59020 Circularity Assessment	Material Circularity Indicator (MCI)		
Purpose	Assess environmental impacts	Measure circular performance using resource-	Score circularity of material flows in a single		
		related indicators	index		
Focus	Environmental burdens (emissions,	Resource inflows/outflows; optional: energy,	Recycled input, product lifetime, recovery at		
	depletion, etc.)	water, economics	end-of-life		
Standards/	ISO 14040, ISO 14044 → ReCiPe 2016	ISO 59020:2024	Ellen MacArthur Foundation (2015)		
Tools					
Indicators	Midpoint and endpoint impact categories	Core: inflow/outflow quality; Optional: energy,	Single score (0–1) reflecting material circularity		
		water, economics			
Output	Environmental impact per functional unit	Multi-indicator profile of circularity	Circularity index supporting material flow decisions		
		performance			
Strength	ngth Quantitative, comprehensive, Holistic, modular, adap		Easy-to-use, design-oriented, highly		
	standardized	Foculty of Science and Engineering	communicable		
Limitations	Complex, assumption-sensitive, data-	Still maturing, not yet widely applied in	Ignores emissions, toxicity, and critical		
	intensive	industry	material risks		
Use in this study	Quantify impacts of UPR, PU, and PA6	Evaluate circularity performance across 11	Compare scenarios on input/output balance		
	climbing holds	scenarios	and longevity		
			BRIGHTLA SPORTINNO CENTE		

Product Under Study & Functional Unit

Product Under Study:

Name	Size	Mass	Main	Production	Main Material(s)
			Location		
rPA6-AW (automotive)	М	242 g	Netherlands		Polyamide 6 (rPA6-AM)
rPA6-CR (climbing ropes)	М	242 g	Netherlands		Polyamide 6 (rPA6-CR)
PU Hold	Μ	442 g	Europe		Virgin Polyurethane (PU)
UPR Hold	Μ	1328 g	Europe		Virgin Unsaturated polyester resins
					(UPR)

Functional Unit:

The lifecycle of one medium-sized climbing hold (M), designed to withstand repeated loading and dynamic forces in accordance with NEN-EN 12572-3:2017 (ISO, 2017) for a lifetime of three years.

System Boundaries → cradle-to-grave

System Boundary A: Thermoset Polyester Resin (UPR)

<u>Figure 5</u> System boundary A of the production of climbing holds made from unsaturated polyester resin (UPR), including the synthesis, preparation, molding, and post-processing stages. Inputs such as raw materials, energy, and water are considered, along with emissions and wastewater outputs. Packaging, distribution, and use lie outside this boundary.

System Boundary B: Thermoset Polyurethane

<u>Figure 6</u> System boundary B of the production of climbing holds made from thermoset polyurethane (PU), covering material production, molding, and post-processing. The diagram includes all relevant inputs (e.g., polyol, isocyanate, additives) and outputs (emissions

System Boundary C: Climbing Holds from Climbing

<u>Figure</u> 7 Overview of System Boundary C for PA6 Climbing Ropes Recycling for Climbing Holds Production. This figure shows the process of collecting climbing ropes from Alphitec's Customers, shredding and agglomerating them at Korrels, followed by compounding and injection molding, with an environmental impact com

System Boundary D: Climbing Holds from Automotive

<u>Figure 8</u> Overview of System Boundary D for PA6 Automotive Waste Recycling and Climbing Hold Production. This figure illustrates the process from collecting PA6 automotive waste, shredding into PA6 flakes, followed by homogenization, compounding with glass fibre,

BRIGHTLANDS SPORTINNOVATOR CENTER

Translation in Scenario's

Кеу	Scenario	SB	Mass FU	Material	Lifetime	Inflow	Outflow	
			[kg]		[years]			
A3I	1	А	1,328	URP	3	Virgin	Landfill	
B3I	2	В	0,442	PU	3	Virgin	Landfill	
C3I	3	С	0,242	PA-CR	3	Virgin	·	FU -
D3I	4	D	0,242	PA-AW	3	Virgin		
C3R	5	С	0,242	PA-CR	3	Secondary	Recycling	LOA
D3R	6	D	0,242	PA-AW	3	Secondary	Recycling	
A6I	7	А	1,328	URP	6	Virgin	Landfill	
C6R	8	С	0,242	PA-CR	6	Secondary	Recycling	
D6R	9	D	0,242	PA-AW	6 _{Eaculty}	Secondary	Recycling	
C9R	10	С	0,242	PA-CR	9	Secondary	Recycling	
D9R	11	D	0,242	PA-AW	9	Secondary	Recycling	

Results – GWP100

The Global Warming Potential (GWP100) decreases strongly from system boundary A (5.00 kg CO₂-eq/FU) to C (0.996 kg CO_2 -eq/FU), with an average of 2.55 kg CO_2 -eq/FU and a standard deviation of 1.86. This highlights clear differences in climate impact between the scenarios.

. .

Results – Life Cycle Energy

This is an example of how sustainability is being measured under the ESRS framework.

How do you currently measure sustainability and circularity in your organization?

Circular Product Design

Design for Product Integrity

Design for Recycling

Greenholds follows a DfR

Figure I Circular product design encompasses both design for product integers, (aimed at preventing and eversing obsolescence at a **approach** product and component level) and design for recycling (aimed at preventing and reversing obsolescence at a material level).

Circular Product Design

Tests show that PA6 is three times more durable than PU and oneandhalf times more durable than UPR

Figure 2 Typology of design approaches for product integrity.

Translation in Scenario's

Кеу	Scenario	SB	Mass FU [kg]	Material	Lifetime [years]	Inflow	Outflow
A3I	1	А	1,328	URP	3	Virgin	Landfill
B3I	2	В	0,442	PU	3	Virgin	Landfill
C3I	3	С	0,242	PA-CR	3	Virgin	Landfill
D3I	4	D	0,242	PA-AW	3	Virgin	Landfill
C3R	5	С	0,242	PA-CR	3	Secondary	Recycling
D3R	6	D	0,242	PA-AW	3	Secondary	Recycling
A6I	7	А	1,328	URP	6	Virgin	Landfill
C6R	8	С	0,242	PA-CR	6	Secondary	Recycling
D6R	9	D	0,242	PA-AW	6	Secondary	Recycling
C9R	10	С	0,242	PA-CR	9	Secondary	Recycling
D9R	11	D	0,242	PA-AW	9	Secondary	Recycling

Results – Material Circularity Indicator (MCI) Trends (Left

Scenarios C3R, C6R, D6R, C9R, and D9R show the highest **MCI values**, close to **0.95–0.98**, indicating these climbing holds are highly circular.

•

- Scenarios A3I and B3I have very low MCI values (~0.2), suggesting they are linear or poorly circular.
- Recycled scenarios (with "R" suffix) perform consistently better in circularity than "L" (Landfill) scenarios.

Results – Energy for Material Production (Right Y-axis,

•A3I has the highest energy requirement (~47-48 **kg/FU)**, showing it is the most energy-intensive scenario. •C3R, C6R, D6R, C9R, D9R require almost zero energy, likely because they use direct low-energy secondary inflow. •A6L stands out with a moderate MCI (~0.4) but a peak in energy demand (~22 kg/FU) — suggesting a conflict between material recovery and energy intensity.

The transition from linear to circular What are your challenges?

Tim.mullens@brightlands.com www.brightlandssportinnovatorcenter.com +31 619055399

Ruud.bongers@maastrichtuniversity.nl +31654948686